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Abstract: Considerable effort and resources have been placed into conservation programs 
designed to reduce or alleviate negative environmental effects of crop production and into 
evaluation of the benefits of these programs. Wetlands are an important source of ecosystem 
services, but modeling wetland plants is an emerging science. To date, wetland plant growth 
has not been explicitly accounted for in ecosystem service models that quantify conservation 
program effects. As part of an effort to more accurately simulate wetland plants within pro-
cess-based models, we expanded upon plant growth data collected in an earlier effort with 
additional sampling at two of four previously sampled areas, and included a fifth sampling site. 
We then used data from the five sites spanning five years as wetland plant parameters at both 
the species and functional group levels for the Agricultural Land Management Alternative 
with Numerical Assessment Criteria (ALMANAC) model. In addition to individual species, 
modelers are interested in functional groups representing a collection of species because it is 
unrealistic to model every species occurring in an ecosystem. ALMANAC simulations were 
completed at three sites for both individual wetland plant species and functional groups. At 
each site, simulated plant yields were within 1 Mg ha–1 (±7%) of measured values (r2 = 0.99). 
Multisite species simulated yields were within 37% of measured values (r2 = 0.95). Functional 
groups performed as well as individual species simulations. Functional group simulated yields 
were within 1 Mg ha–1 (±5%) of measured yields. Plant growth is a major component of these 
wetland ecosystems, and ALMANAC verified wetland plant parameters support more accurate 
assessments of conservation programs and practices on the influence of wetland ecosystems 
embedded within agricultural fields. The improved plant parameters we provide here will be 
transferred to other process-based models that focus on other ecosystem components such as 
soil and water effects, facilitating wetland evaluations across the United States and elsewhere.
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Process-based wetland models and 
associated plant parameters are parts 
of a developing science, with constant 
improvements providing more accurate 
simulations of plant-growth influences 
on wetland hydrological, geochemical, 
and biological processes. Modeling wet-
lands is a vital necessity to inform landowners, 
conservationists, and policymakers of how 
ecosystem services provided by wetlands are 
affected by management activities and cli-
matic influence. Wetlands provide numerous 
ecosystem services including aquifer recharge, 
floodwater and runoff mitigation, nutrient 

and sediment trapping, biodiversity refugia, 
and human recreation (Brauman et al. 2007; 
Smith et al. 2015). Past research has focused 
on including upland species in process-based 
models. This past research on upland plants 
has facilitated great advances in modeling 
the effects of croplands and conservation 
practices (e.g., establishment of perennial veg-
etation buffers) on water dynamics within 
agricultural fields (Wang et al. 2006, 2008; 
Potter et al. 2006; Atwood et al. 2009; USDA 
NRCS 2014, 2018a). However, process-based 
model simulations of plant effects on field-
level hydrologic dynamics have been largely 

ignored in freshwater wetlands (natural and 
created). Wetland modeling has been pri-
marily focused on hydrology, including the 
influence of upland land use and changes in 
climate (Rezaeianzadeh et al. 2018; Pattison-
Williams et al. 2018; Matchett and Fleskes 
2017; Sizo et al. 2015; Liu et al. 2018; Esralew 
et al. 2016). However, the few models that 
have focused on including wetland plants 
were either for coastal ecosystems (Visser 
and Duke-Sylvester 2017), or did not include 
plant growth (Voldseth et al. 2007; Wolski and 
Murray-Hudson 2008). A primary reason for 
this underrepresentation of wetlands in mod-
eling efforts has been a dearth of information 
needed to parameterize models to accurately 
simulate the growth of wetland-specific plant 
species, or groups of wetland species. Accurate 
simulation of these plants is important for 
modeling water dynamics. 

While agriculture is an obvious necessity 
for feeding growing world populations, gov-
ernment agencies need to address many of 
the practices associated with crop production 
that can have negative impacts on natural eco-
systems. These negative impacts affect many 
services such as improved water quality and 
quantity (Gordon et al. 2010; Scanlon et al. 
2005). Negative impacts of crop production 
include loss of habitat, sediment, nutri-
ents, and pesticides, which result in erosion, 
runoff, and environmental contamination. 
The USDA funds numerous conservation 
programs designed to reduce or alleviate 
negative environmental effects of crop pro-
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duction. The USDA’s Conservation Effects 
Assessment Project (CEAP) was initiated 
with a goal of quantifying the environmental 
effects of conservation practices and pro-
grams (Johnson et al. 2015; Smith et al. 2015). 
This project provides guidance for conserva-
tion efforts to be more efficiently directed, 
and program-level cost/benefit ratios to be 
determined. Therefore, it is crucial for quan-
tifications of the influence of conservation 
practices to be as accurate as possible. 

CEAP-Wetlands was initiated as a new 
component of CEAP in 2004 (Smith et al. 
2015). It has taken both a field research and 
modeling approach to determine the impacts 
of conservation practice implementation on 
ecosystem services provided by wetlands in 
agricultural lands. Field research enhances 
knowledge of environmental effects of spe-
cific practices, wetland processes, and data 
to develop process-based simulation model 
improvements. The models can then quan-
tify how wetlands are integrated with the 
landscape, effects of agricultural conser-
vation practices, and effects of changes 
in land use and climate. Since simulation 
modeling paired with field-based empiri-
cal studies is the primary means by which 
CEAP-Wetlands quantifies conservation 
effects, improving wetland models is crucial 
(Euliss Jr. et al. 2010). 

Agricultural Land Management 
Alternative with Numerical Assessment 
Criteria (ALMANAC) is a process-based 
daily time-step plant growth model (Kiniry 
et al. 1992). This model has been used to 
simulate single plants and ecosystems, both 
in agricultural and native settings (Kiniry 
et al. 2007, 2013, 2017, 2018). ALMANAC 
simulates plant growth, senescence, compe-
tition, temperature response, stress, nutrient 
cycling, soil erosion, and hydrologic bal-
ance including infiltration, soil moisture, 
plant uptake, evapotranspiration, and runoff. 
Plant growth can be stressed by soil, water, 
nitrogen (N), phosphorus (P), temperature, 
salinity, and management practices. Various 
management practices, such as tillage and 
fertilization, can be applied. Once validated, 
the ALMANAC model’s parameters can be 
transferred to other process-based models 
such as Environmental Policy Integrated 
Climate (EPIC), Agricultural Policy / 
Environmental eXtender (APEX), and Soil 
and Water Assessment Tool (SWAT) (Kim 
et al. 2018b; Meki et al. 2017, 2015; Chavez 
et al. 2018; Osorio et al. 2014). These mod-

els focus on landscape- and watershed-scale 
simulations. This three step approach ([1] 
collecting plant data, [2] simulating local 
areas with ALMANAC, and [3] simulating 
regional areas with APEX/SWAT) has been 
implemented in other CEAP projects to 
help inform policy (Johnson et al. 2015) and 
will now be implemented for wetlands. This 
will fill the knowledge gap on wetland plant 
growth modeling, thus improving future 
endeavors addressing conservation effects on 
ecosystem services. 

Regional wetland studies were estab-
lished (Smith et al. 2015) to better ensure 
the CEAP-Wetlands goals were addressed 
throughout the nation. In an effort to more 
accurately simulate wetlands, we initiated a 
multiyear study to quantify plant-growth 
metrics specific to wetland species across 
multiple CEAP-Wetlands regions. The first 
phase of the work was conducted from 
2013 to 2015 and determined wetland plant 
growth parameters from 18 species and 
two to four functional groups using data 
collected in four CEAP-Wetlands regions 
(Williams et al. 2017). Modeling every plant 
in every wetland nationwide is impractical. 

Instead, functional groups have been used 
successfully in the past to represent similar 
situtations where it is not feasable to simu-
late every plant in an ecosystem (Boer and 
Stafford Smith 2003; Byun et al. 2013; Guo 
et al. 2015; Kiniry et al. 2013, 2014; Muler et 
al. 2018; Pokorny et al. 2005). In this study, 
wetland plant functional groups were deter-
mined based on plant growth habit and the 
measured plant parameter values as described 
below. Sites sampled in the initial effort were 
chosen from CEAP regions, and included 
the mid-Atlantic rolling plains of Delaware, 
Maryland, and Virginia peninsula (hereafter 
the study site is referred to as “Delmarva”), 
the Prairie Pothole Region (hereafter the 
study site is referred to as “North Dakota”), 
the Playa Region in southern High Plains 
of Texas, and central Texas (figure 1). The 
objectives in the current study were two-
fold: (1) to expand upon the plant growth 
data collected by Williams et al. (2017) by an 
additional two years of sampling at two of 
the previously sampled study sites (Delmarva 
and North Dakota) and at a new sampling 
site in a fifth CEAP-Wetlands region, the 
California Central Valley (hereafter the study 

Figure 1
Wetlands simulated from left to right are in California, North Dakota, and Delmarva. All five loca-
tions measured are shown below. 
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site is referred to as “California”) including 
new measurements of radiation use effi-
ciency, seed weight, and harvest index; and 
(2) to use the enhanced data set to simulate 
both individual species and functional groups 
in ALMANAC at the field sites. 

Materials and Methods
Field Data. We sampled plant growth 
parameters at the Delmarva, North Dakota, 
and California sites (figure 1) over the 2016 
to 2017 growing seasons. Delmarva and 
North Dakota are depressional wetlands; 
neither were planted, fertilized, or hydro-
logically managed during the study. For 
more details on the Delmarva and North 
Dakota sites, including the species sampled, 
refer to Williams et al. (2017). The newly 
added California site was located on the 
Colusa National Wildlife Refuge in Colusa, 
California. Unlike the other wetlands in this 
and the previous study, which were natu-
rally occurring depressional wetlands, the 
wetlands sampled in California were created 
by dikes in historic floodplains, and water 
inflows and outflows were heavily managed. 
Water from irrigation ditches was allowed 
to flood the wetland at certain times of the 
year, then later drained to dry the wetland 
(US Fish and Wildlife Service 2009; Smith 
et al. 1995). Empirical information regard-
ing inundation periodicity and depth was 
unavailable, but refuge managers mimicked 
natural flooding cycles as stated in their man-
agement plan (US Fish and Wildlife Service 
2009; Smith et al. 1995). The California 
species sampled and their wetland indicator 
status (USDA NRCS 2018b) include joint 
grass (Paspalum distichum; facultative wetland), 
alkaline bulrush (Scirpus maritimus; obligate 
wetland), swamp timothy (Crypsis schoenoi-
des; obligate wetland), annual smartweed 
(Persicaria lapathifolium; facultative wetland), 
watergrass (Echinochloa crus-galli; facultative), 
cattail (Typha spp.; obligate wetland), spiker-
ush (Eleocharis spp.; includes both facultative 
wetland and obligate wetland species), and 
rabbitsfoot (Polypogon monspeliensis; faculta-
tive wetland). 

Plant parameter data collected for the 
models included fraction of intercepted 
photosynthetically active radiation (FIPAR), 
leaf-area index (LAI), light extinction coef-
ficient (k), radiation use efficiency (RUE), 
plant height, dry weight, seed weight, har-
vest index (HI), and nutrient values for N 
and P. FIPAR was measured using a cep-

tometer, LAI was quantified using a leaf area 
meter and the ground area sampled, and k 
was determined from the LAI and FIPAR 
according to Beer’s law (Monsi and Saeki 
1953). RUE, while not collected in the 
previous study, was calculated here as the 
increase in aboveground dry biomass per 
summed unit of intercepted photosyntheti-
cally active radiation. RUE values for a single 
species were based on the 2016 to 2017 data, 
which showed an increase in dry weight over 
the growing season. Plant height was mea-
sured from the ground or water to the tip of 
the tallest plant to help determine maximum 
potential growth. Aboveground dry weights 
and seed weights were recorded to com-
pare to simulated yields and calculate other 
parameters including LAI, k, RUE, and HI. 
Seed weight, HI, and RUE were only deter-
mined in 2016 to 2017. Nutrient values were 
derived from vegetation across three har-
vests throughout the growing season. These 
were quantified separately for each plant 
part (stems, leaves, and reproductive parts). 
Phosphorus values were collected in 2015 to 
2016, and N values were sampled in 2017. 
Nutrient concentrations in vegetation for 
2015 to 2017 were determined from ground 
dry plant matter using the inductively cou-
pled plasma atomic emission spectrometry 
(ICP-AES) technique (Isaac et al. 1998). For 
additional details regarding the field sampling 
procedures, refer to Williams et al. (2017). 

ALMANAC Simulations. Three sites, 
Delmarva, North Dakota, and California, 
were simulated in ALMANAC based on the 
2013 to 2017 data applicable to each site. Site 
coordinates used in the simulations matched 
the physical sampling sites but cannot be 
shared here due to privacy agreements. 
Weather data used for our simulations were 
downloaded from weather stations nearest 
to each site during the sampling years from 
the National Oceanic and Atmospheric 
Administration (NOAA)’s Climate Data 
Online website (NOAA 2018). Soil Survey 

Geographic Database (SSURGO) data were 
downloaded from USDA Natural Resources 
Conservation Service (NRCS)’s Web Soil 
Survey website (USDA NRCS 2018c). The 
nearest weather station coordinates, and soils 
at Delmarva, North Dakota, and California, 
are listed in table 1. 

In the model simulations, management was 
kept consistent at each site. Simulations for 
all sites had the target species planted in Year 
One on April 2, and harvested on August 1. 
These dates were chosen as an average date 
across all sites based on the measured plant 
greenup dates and the final field harvest dates. 
To mimic the ideal unstressed growing con-
ditions, we used the ALMANAC automatic 
irrigation and automatic fertilization func-
tions. ALMANAC was set to irrigate using 
furrows so the water would pool on the sur-
face. Auto irrigation added more water when 
the plant water stress reached a user-defined 
value. Auto fertilization added more N when 
the plant N stress factor reached 0.99 day. 
Maximum yearly automatic fertilization 
applied was adjusted for each of the sites: 
200 kg ha–1 N for North Dakota, 100 kg 
ha–1 N for Delmarva, and 300 kg ha–1 N for 
California. At the field sites, only California 
actually had water management applied by 
managers. As we did not have access to that 
information, we assumed that the introduced 
irrigation water had higher nutrients enter-
ing the system than the other rainfed sites, 
hence the higher applied N. 

Plant growth parameters were derived 
from the initial four locations from 2013 to 
2015 (Williams et al. 2017) and supplemented 
with the additional data collected from 
Delmarva, North Dakota, and California 
from 2016 to 2017. Simulations were then 
run at the final three sites spanning the entire 
data collection years for the pertinent spe-
cies at each site and compared to actual plant 
growth field data. Four wetland plant species 
were not simulated from these sites due to 
insufficient data. In California smartweed, 

Table 1
Experimental locations, nearest weather stations’ latitude and longitude, and the wetland 
soil type. Due to privacy agreements, specific site latitude and longitude cannot be divulged, 
but the coordinates listed are the weather stations used in the simulations. Soil types shown 
occur at field site locations and were used for simulations. 

 Weather station’s
Location latitude, longitude Soil type for vegetation

North Dakota 46.9258, –98.6691 Parnell silty clay loam, 0% to 1% slopes
Delmarva 39.1733, –76.683 Corsica mucky loam, 0% to 1% slopes
California	 39.1875,	–122.0269	 Willows	silty	clay,	0%	to	1%	slopes,	frequently	flooded
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rabbitsfoot, and spikerush were not simu-
lated, whereas in North Dakota, slough sedge 
(Carex atherodes) was not simulated. Reed 
canarygrass (Phalaris arundinacea) had three 
parameter values determined from Schilling 
and Kiniry (2007): the fraction of the season 
when leaf area declines, and the minimum 
and maximum growing temperatures. Plant 
parameters derived for the simulations were 
radiation use efficiency for the model calcu-
lated as RUE times 10 as a unit conversion 
factor (WA), harvest index (HI), maximum 
growing temperature in °C (TB), minimum 
growing temperature in °C (TG), maximum 
LAI (DMLA), fraction of growing season 
when leaf area declines (DLAI), first point 
on leaf area development curve (LAP1), 

second point (LAP2), plant population at a 
low density with a fraction of LAI (PPL1), 
higher density (PPL2), rate of decline in WA 
(RBMD), maximum plant height in meters 
(HMX), maximum root depth in meters 
(RDMX), extinction coefficient from Beer’s 
law (k), plant population per 1 m2 (POP), and 
potential heat units (PHU).

Single species were simulated first to 
establish parameters, followed by functional 
groups. Species omitted from simulation runs 
were those that did not show an increase in 
dry weight, were not sampled frequently 
enough, or did not have reproductive parts 
during the sampling period. In Williams et al. 
(2017) we used a different approach to create 
functional groups: high LAI versus low LAI, 

or all rushes/sedges versus other forbs ver-
sus grasses. With the addition of more field 
data, our high and low LAI groups changed 
slightly. We added more grasses and bulrush 
changed functional groups from the low LAI 
group to the high LAI group. Since we did 
not simulate any from the low LAI group 
except marsh flatsedge (Cyperus pseudovege-
tus) at Delmarva, the group split is not shown 
for any low/high LAI groupings. Functional 
groups were (1) rushes and sedges, (2) forbs, 
and (3) grasses. 

Results and Discussion
Field Data. Field data gathered in 2013 to 
2015 were updated with 2016 to 2017 val-
ues, and new variables such as HI and RUE 

Table 2
Average values for plant functional group parameters used in models of plant growth collected from wetlands in California, North Dakota, Texas, 
and the Delaware, Maryland, and Virginia peninsula, 2013 to 2017. FIPAR is the fraction of intercepted photosynthetically active radiation. Max LAI 
is the maximum leaf area index. k is the extinction coefficient. Dry Wt is the total aboveground plant dry weight. Seed Wt is the seed weight. HI is 
the harvest index. RUE is the radiation use efficiency. Seed Wt and RUE were measured only in 2016 and 2017.

    Dry Wt Seed Wt  RUE
Wetland species FIPAR Max LAI k (g m–2) (g m–2) HI (g MJ–2)

Rushes	and	sedges	 	 	 	 	 	 	
		Marsh	flatsedge	 0.28	 0.65	 –1.27	 97.3	 32.9	 0.30	 0.670
  (Cyperus pseudovegetus)
  Spikerush (Eleocharis spp.) 0.24 0.88 –0.29 387.3 123.3 0.17 —
  Bulrush (Schoenoplectus spp.) 0.40 1.45 –0.80 405.7 75.0 0.13 2.541
		Slough	sedge	(Carex atherodes) 0.67 2.27 –0.94 345.1 — — 0.531
  Poverty rush (Juncus tenuis) 0.46 4.31 –0.48 687.8 63.6 0.16 9.601
Average	 0.41	 1.91	 –0.76	 384.6	 73.7	 0.19	 —
Standard	deviation	 0.17	 1.48	 0.38	 210.0	 37.5	 0.07	 —
Forbs       
		Bur	ragweed	(Ambrosia grayi) 0.31 0.55 –0.63 94.2 — — —
		Arrowhead/duck	potato		 0.32	 0.66	 –0.60	 71.5	 —	 —	 —
  (Sagittaria longiloba)
		Cheeseweed	(Malvella leprosa) 0.30 0.80 –0.48 97.4 — — —
		Smartweed	(Polygonum spp.) 0.56 1.76 –1.15 277.2 6.5 0.03 1.294
		Narrowleaf	goosefoot	 0.70	 1.88	 –0.66	 460.8	 —	 —	 —
  (Chenopodium leptophyllum)
  Cattail (Typha spp.) 0.52 2.67 –0.70 895.2 200.7 0.20 4.096
Average	 0.45	 1.38	 –0.70	 316.1	 103.6	 0.11	 —
Standard	deviation	 0.17	 0.85	 0.23	 320.8	 137.3	 0.12	 —
Grasses       
  Rabbitsfoot (Polypogon 0.26 1.55 –0.25 342.4 187.4 0.55 —
  monspeliensis)
		Sprangletop	(Scolochloa festucacea) 0.62 1.61 –1.26 322.8 47.8 0.07 2.135
		Watergrass	(Echinochloa crus-galli) 0.56 2.65 –0.55 773.9 103.6 0.11 0.789
		Reed	canarygrass	 0.74	 2.84	 –0.75	 507.5	 63.7	 0.12	 1.177
  (Phalaris arundinacea)
  Swamp timothy (Crypsis schoenoides) 0.84 3.44 –1.00 647.9 148.6 0.20 1.912
		Joint	grass	(Paspalum distichum) 0.89 5.45 –0.68 446.6 45.6 0.07 0.452
Average	 0.65	 2.92	 –0.75	 506.8	 99.4	 0.19	 —
Standard	deviation	 0.23	 1.44	 0.35	 176.5	 58.3	 0.18	 —
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were determined (table 2). Field measured 
values from all our wetland plant species 
from all five field sites and from all five years 
are arranged according to their functional 
group. The forbs functional group had the 
lowest HI (0.11). This group had the high-
est seed weight measured (103.6 g m–2) due 
to the inclusion of cattail (200.7 g m–2). As 
more values for seed weight are collected 
for this functional group in the future, it 
may not remain the highest as there were 

many grasses with a high seed weight (aver-
age 99.4 g m–2). The grasses functional group 
had the highest values for FIPAR (0.65), 
LAI (2.92), and dry weight (506.8 g m–2). 
Variation of field data is expected in natural 
systems. Cattail dry weights ranged from 110 
to 1,605 g m–2, but the additional data helped 
give stability to our averages (table 3). Dry 
weights were not previously published and 
are incorporated in table 3 along with seed 
weight and HI. Nutrient values showed a 

general decrease across the season, with a few 
exceptions (table 4). Cattail and smartweed 
did not follow these trends, possibly because 
these species tend to start growing later in 
the season than the other plants in the study 
and thus would also have persisted later in the 
season before seeing a decline in nutrient val-
ues. Smartweed, for example, was often green 
but still submerged when the other plants 
were already above water level for measuring. 
When these two species were harvested early 

Table 3
Average values for plant dry weight (Dry Wt), seed weight (Seed Wt), and harvest index (HI) collected from wetlands in Texas; North Dakota; the Del-
aware, Maryland, and Virginia peninsula (Delmarva); and California, 2013 to 2017. If many sites per location, we took the result from each site, then 
averaged them to get the location result. Dry weight was obtained from the last harvest of the year unless there were unusual circumstances. Seed 
weight was from the date with the highest seed weight. All values are in g m–2 except HI, which is unitless. 

 2013 2014 2015 2016   2017   Average across all years

Location and species Dry Wt Dry Wt Dry Wt Dry Wt Seed Wt HI Dry Wt Seed Wt HI Dry Wt Seed Wt HI

Lubbock, Texas            
		Bur	ragweed	 148.8	 39.6	 —	 —	 —	 —	 —	 —	 —	 94.2	 —	 —
		Narrowleaf	goosefoot	 460.8	 —	 —	 —	 —	 —	 —	 —	 —	 460.8	 —	 —
  Spikerush 77.0 2.2 — — — — — — — 39.6 — —
		Cheeseweed	 138.8	 56.0	 —	 —	 —	 —	 —	 —	 —	 97.4	 —	 —
		Pink	smartweed	 208.3	 17.3	 —	 —	 —	 —	 —	 —	 —	 112.8	 —	 —
Temple, Texas            
		Arrowhead/duck	potato	 —	 26.8	 116.3	 —	 —	 —	 —	 —	 —	 71.5	 —	 —
  Black willow — 320.3 — — — — — — — 320.3 — —
		Hardstem	bulrush	 —	 130.5	 —	 —	 —	 —	 —	 —	 —	 130.5	 —	 —
Jamestown, North Dakota            
		Reed	canarygrass	 —	 313.0	 443.7	 633.3	 78.8	 0.12	 640.0	 48.5*	 0.11*	 507.5	 63.7	 0.12
		Water	smartweed	 —	 207.8	 —	 —	 —	 —	 —	 —	 —	 207.8	 	
		Hardstem	bulrush	 —	 282.6	 379.9	 545.8	 66.4	 0.12	 492.6	 65.4	 0.13	 425.2	 65.9	 0.13
  Narrowleaf cattail — 661.1 110.0 1,045.6 259.9 0.25 978.8 138.0 0.14 698.9 198.9 0.19
		Slough	sedge	 —	 593.5	 229.0	 260.5	 —	 —	 297.6	 —	 —	 345.1	 	
		Sprangletop	 —	 133.1	 193.1	 534.1	 —	 —	 430.8	 47.8*	 0.07*	 322.8	 47.8	 0.07
Delmarva            
		Broadleaf	cattail	 —	 839.3	 517.0	 512.9	 88.7*	 0.22*	 514.3	 139.6*	 0.17*	 595.9	 114.2	 0.19
		Poverty	rush	 —	 1,101.2	 857.8	 340.4	 67.5*	 0.11*	 451.7	 59.8*	 0.22*	 687.8	 63.6	 0.16
		Pink	smartweed	 —	 236.6	 321.9	 247.5	 17.3	 0.06	 36.7	 2.1	 0.03	 210.7	 9.7	 0.05
		Marsh	flatsedge	 —	 140.3	 83.6	 65.3	 59.8*	 0.55*	 100.2	 72.0*	 0.64*	 97.3	 65.9	 0.59
Colusa, California            
		Joint	grass	 —	 —	 —	 475.1	 74.3*	 0.11*	 418.1	 16.9	 0.04	 446.6	 45.6	 0.07
  Alkaline bulrush — — — 880.1 57.9 0.05 442.6 110.5 0.24 661.4 84.2 0.14
  Swamp timothy — — — 729.4 148.6 0.20 566.3 — — 647.9 148.6 0.20
		Smartweed	 —	 —	 —	 367.6	 —	 —	 787.4	 3.3	 0.00	 577.5	 3.3	 0.00
		Watergrass	 —	 —	 —	 463.2	 26.2	 0.06	 1,084.6	 180.9	 0.17	 773.9	 103.6	 0.11
  Cattail — — — 1,176.3 317.0 0.24 1,605.2 260.9 0.16 1,390.8 288.9 0.20
  Spikerush — — — — — — 734.9 123.3 0.17 734.9 123.3 0.17
  Rabbitsfoot — — — — — — 342.4 187.4 0.55 342.4 187.4 0.55
*Dry	weight	shown	and	dry	weight	used	for	HI	are	different	because	the	seed	weight	was	highest	on	a	date	other	than	the	last.
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in the season, some had no stems, and as such 
all plant parts were treated as leaves. With 
these yields and updated parameters, we were 
able to perform model simulations. 

ALMANAC Simulations. Simulation 
results closely resembled measured values. 
Though we have data for five sites, five years, 
and 18 species, only sites and species with 
the most complete data were used. We sim-
ulated 10 species at one to three sites, and 
three functional groups at two to three sites. 
Plant parameters for multisite species were 
consistent except for population (POP) 
and degree days from planting to maturity 
(PHU), which were adjusted for sites (table 
5). The parameters used were derived from 
data from sites and years, not just from the 
simulated sites. Functional groups were 
from this 2013 to 2017 data, but some plant 
parameters were changed based on the values 
of simulated species used for the group. For 

example, six species were originally in the 
forbs group, but we only simulated two of 
them, so we changed a few values based on 
those simulations. If WA is higher than mea-
sured it was because WA includes roots and 
our measurements were based only on abo-
veground biomass. If DMLA is higher than 
measured it was because we wanted to make 
sure real Max LAI was reached by the harvest 
date. If HMX is higher than measured it was 
because we used values from the literature. 

The ALMANAC yields were consistently 
similar to the measured yields (table 6) by 
plant species and site. ALMANAC simulated 
yields within 0% to 6% for single site species. 
Multisite species simulations showed greater 
discrepancies from measured values. These 
yields were within 1% to 37% of measured 
yields. These multisite species were measured 
at more sites than were simulated, which 
likely accounts for the large differences in 

numbers. At each site for the multisite species, 
values were within 0% to 7% of measured 
values at the site as opposed to the measured 
average (data not shown). The functional 
group ALMANAC yields were within 5% 
of the measured yields (table 7). The rushes 
and sedges and forbs functional groups were 
simulated at all three sites using data from all 
species, all five years, and all five sites. The 
grasses functional group was simulated at 
North Dakota and California using data from 
those two sites from all five years and 6 spe-
cies. Comparisons between all the simulated 
and measured yields had an r2 value greater 
than 0.99 (figure 2). Comparisons with mul-
tisite values instead of single sites had an r2 

value of 0.95 (figure 3). ALMANAC simu-
lated the single site yields of multisite plants 
more closely than a multisite average.

Summary and Conclusions
Wetland models are critical for informed 
wetland management and policy at multi-
ple spatial and temporal scales, especially in 
light of land cover and climate change. With 
increased knowledge of the environmen-
tal effects of specific practices, conservation 
efforts could be more effectively imple-
mented. This study is an important 
advancement of the CEAP-Wetlands efforts. 
These field data and resulting model simu-
lations are essential first steps to being able 
to answer many of the questions CEAP-
Wetlands has been charged with. These 
questions include what difference are wet-
lands making, what practices have the 
greatest impact, where is support needed, 
and what effect do changes to the uplands 
have on wetlands. By successfully simulating 
wetland plant functional groups, we can now 
use these groups in landscape simulations 
to better incorporate wetlands in scenar-
ios of interest, e.g., climate change, land use 
change, and conservation effort assessments. 
We now have reasonable parameters for the 
appropriate type of plants to simulate. These 
parameters for freshwater wetlands in the 
United States are a good starting point for 
other researchers to further test this method-
ology. These parameters, along with the new 
parameters for black willow (Salix nigra) and 
green ash (Fraxinus pennsylvanica) (Kim et al. 
2018a), allow for more informed simulations 
of wetlands. This paper along with the one by 
Kim et al. (2018a) show the beginning of our 
modeling capabilities with the incorpora-
tion of validated wetland plant ALMANAC 

Table 4
Nutrient values from Delmarva and North Dakota. Nitrogen (N) was measured in 2017. Phospho-
rus (P) was measured in 2015 to 2016. Repro is the entire reproductive structure. 

  Date 1  Date 2  Date 3 

Species Plant part N (%) P (g g–1) N (%) P (g g–1) N (%) P (g g–1)

Rushes	and	sedges	 	 	 	 	 	 	
		Hardstem	bulrush	 Leaves	 1.89	 0.0020	 1.35	 0.0018	 1.30	 0.0015
  Repro — 0.0029 1.43 0.0032 0.74 0.0024
		Slough	sedge	 Leaves	 2.78	 0.0043	 1.81	 0.0032	 1.28	 0.0025
  Repro — — — — — 0.0030
  Poverty rush Leaves 0.64 0.0019 0.74 0.0013 0.94 0.0011
  Repro 1.02 0.0019 0.73 0.0022 0.70 0.0008
		Marsh	flatsedge	 Leaves	 2.48	 0.0020	 1.05	 0.0017	 0.62	 0.0005
  Repro 1.83 0.0025 1.50 0.0018 1.14 —
Average	 Leaves	 1.95	 0.0026	 1.24	 0.0020	 1.04	 0.0014
 Repro 1.43 0.0024 1.22 0.0024 0.86 0.0021
Forbs       
  Narrowleaf cattail Leaves 1.75 0.0031 1.08 0.0026 1.40 0.0018
  Repro — — 0.68 0.0031 1.60 0.0027
		Smartweed	 Leaves	 1.35	 0.0032	 2.41	 0.0025	 2.12	 0.0022
  Stems 1.00 0.0029 1.02 0.0025 0.77 0.0021
  Repro — — — — 1.40 0.0032
Average	 Leaves	 1.55	 0.0031	 1.75	 0.0025	 1.76	 0.0020
 Stems 1.00 0.0029 1.02 0.0025 0.77 0.0021
 Repro — — 0.68 0.0031 1.50 0.0030
Grasses       
		Reed	canarygrass	 Leaves	 3.10	 0.0044	 2.12	 0.0038	 1.00	 0.0022
  Repro — — 1.61 0.0064 1.10 0.0038
		Sprangletop	 Leaves	 1.73	 0.0044	 1.45	 0.0027	 1.70	 0.0016
  Repro — — 1.41 0.0023 1.50 —
Average	 Leaves	 2.42	 0.0044	 1.79	 0.0033	 1.35	 0.0019
  Repro — — 1.51 0.0043 1.30 0.0038
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parameters into APEX and SWAT to model 
wetlands on the landscape. With our three 
step approach of (1) measuring field data, 
(2) modeling with local plant growth with 
ALMANAC, and (3) moving ALMANAC 
parameters to landscape scale models, we can 
inform policymakers and prepare them to 
take the best course of action. After verifying 
the model simulations with our new param-
eters, we can now address pressing questions 
regarding the effect of climate change and 
upland management on these ecosystems. 
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Table 5
Parameters simulated from 2013 to 2017 data. WA is radiation use efficiency (RUE) for the model calculated as RUE times 10 as a unit conversion 
factor. HI is harvest index. TB is maximum growing temperature in °C. TG is minimum growing temperature in °C. DMLA is maximum leaf area index 
(LAI). DLAI is the fraction of the growing season when leaf area declines. LAP1 is the first point on leaf area development curve, and LAP2 is the 
second point. PPL1 is the plant population at a low density with a fraction of maximum potential LAI, and PPL2 is the number at a higher density. 
RBMD is the rate of decline in WA. HMX is the maximum plant height in meters. RDMX is the maximum root depth in meters. EXT is the extinction 
coefficient from Beer’s law. POP is the plant population per 1 m2. PHU is the potential heat units.

Species WA HI TB TG DMLA DLAI LAP1 LAP2 PPL1 PPL2 RBMD HMX RDMX EXT POP PHU

Bulrush 54† 0.13 30 10 2.8† 0.6 15.13 75.99 5.12 20.96 0.1 2.99† 0.36 0.8 9 780
BulrushCA 41† 0.13 30 10 2.8† 0.2 17.13 18.99 5.12 20.96 1 2.99† 0.36 0.8 20 1,000
Cattail*	 50†	 0.2	 30	 10	 4†	 0.74	 16.51	 75.99	 1.12	 10.9	 0.1	 2.04	 0.36	 0.7	 6.7;	 825;
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 4;	 865;
               10 1,000
Smartweed*	 18†	 0.03	 27	 10	 2.2†	 0.6	 17.25	 60.73	 3.12	 15.96	 0.1	 1.2†	 0.36	 1.15	 17;	 700;
               8 900
Reed	canarygrass	 22†	 0.12	 25	 3	 2.84	 0.5	 13.17	 36.99	 1.12	 6.96	 0.1	 1.89	 0.36	 0.75	 9	 1,600
Sprangletop	 21.35	 0.07	 25	 12	 1.61	 0.4	 13.31	 58.99	 1.12	 6.96	 0.1	 1.49†	 0.41	 1.26	 9	 1,600
Marsh	flatsedge	 20†	 0.3	 25	 12	 1.3†	 0.7	 3.4	 73.6	 3.12	 20.96	 0.1	 0.83	 0.25	 1.27	 9	 1,100
Poverty rush 96.01 0.16 25 12 4.31 0.4 3.18 33.99 1.12 6.96 3 1.61 0.15 0.48 8 800
Joint	grass	 16†	 0.07	 25	 10	 5.45	 0.65	 38.74	 51.99	 1.12	 6.96	 0.1	 0.8	 0.10	 0.68	 8	 1,300
Watergrass	 20†	 0.11	 25	 10	 2.65	 0.8	 8.57	 99.99	 1.12	 25.96	 0.1	 1.5	 0.36	 0.55	 30	 1,700
Swamp timothy 19.12 0.2 25 12 3.44 0.4 69.62 80.67 1.12 6.96 0.1 0.75 0.36 1 10 1,300
Rushes/sedges	 33.36	 0.19	 25	 12	 1.9	 0.4	 9.12‡	 50.75‡	 4.12‡	 17.96‡	 0.5‡	 1.59	 0.20	 0.76	 20	 900
Forbs	 26.95	 0.11	 25	 12	 1.38	 0.4	 17.38‡	 68.86‡	 2.12‡	 13.93‡	 0.1	 1.01	 0.36	 0.7	 16	 900
Grasses	 19.694‡	 0.11‡	 25	 9.4‡	 3.2‡	 0.55‡	 28.48‡	 65.93‡	 1.12	 6.96	 0.1	 1.16	 0.28	 0.75	 9	 1,500
*Cattail	and	smartweed	have	different	values	for	POP	and	PHU	based	on	location.	The	numbers	listed	are	for	North	Dakota	first,	followed	by	Delmar-
va, then California, if applicable.
†These	parameters	were	higher	than	measured	values.
‡Functional	group	parameters	from	simulated	species	instead	of	calculated	values.

Table 6
Comparing yields simulated by the ALMANAC model (ALNC yield) and measured yields (MSRD 
yield). ALNC/MSRD is the ratio of simulated yields divided by measured yields. These data 
are for sites where the plant species were measured and simulated. Plants belonging to the 
functional group rushes/sedges are depicted with symbol R, other forbs are shown with F, and 
grasses have symbol G. The average measured values for multisite species includes sites we 
did not simulate. 

Species ALNC yield MSRD yield ALNC/MSRD Sites

Reed	canarygrass	G 5.15 5.08 1.01 North Dakota
Sprangletop	G 3.22 3.23 1.00 North Dakota
Marsh	flatsedge	R	 0.91	 0.97	 0.94	 Maryland
Poverty rush R	 7.07	 6.88	 1.03	 Maryland
Joint	grass	G 4.34 4.47 0.97 California
Watergrass	G 7.31 7.74 0.94 California
Swamp timothy G 6.39 6.48 0.99 California
Bulrush R 5.58 4.06 1.37 North Dakota, California
Cattail F	 8.91	 8.95	 0.99	 North	Dakota,	Maryland,	 
    California
Smartweed	F	 2.17	 2.77	 0.78	 North	Dakota,	Maryland
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